Myosin Va molecular motors manoeuvre liposome cargo through suspended actin filament intersections in vitro
نویسندگان
چکیده
Intracellular cargo transport relies on myosin Va molecular motor ensembles to travel along the cell's three-dimensional (3D) highway of actin filaments. At actin filament intersections, the intersecting filament is a structural barrier to and an alternate track for directed cargo transport. Here we use 3D super-resolution fluorescence imaging to determine the directional outcome (that is, continues straight, turns or terminates) for an ∼10 motor ensemble transporting a 350 nm lipid-bound cargo that encounters a suspended 3D actin filament intersection in vitro. Motor-cargo complexes that interact with the intersecting filament go straight through the intersection 62% of the time, nearly twice that for turning. To explain this, we develop an in silico model, supported by optical trapping data, suggesting that the motors' diffusive movements on the vesicle surface and the extent of their engagement with the two intersecting actin tracks biases the motor-cargo complex on average to go straight through the intersection.
منابع مشابه
Myosin Va maneuvers through actin intersections and diffuses along microtubules.
Certain types of intracellular organelle transport to the cell periphery are thought to involve long-range movement on microtubules by kinesin with subsequent handoff to vertebrate myosin Va (myoVa) for local delivery on actin tracks. This process may involve direct interactions between these two processive motors. Here we demonstrate using single molecule in vitro techniques that myoVa is flex...
متن کاملControl of the Initiation and Termination of Kinesin-1-Driven Transport by Myosin-Ic and Nonmuscle Tropomyosin
Intracellular transport is largely driven by processive microtubule- and actin-based molecular motors. Nonprocessive motors have also been localized to trafficking cargos, but their roles are not well understood. Myosin-Ic (Myo1c), a nonprocessive actin motor, functions in a variety of exocytic events, although the underlying mechanisms are not yet clear. To investigate the interplay between my...
متن کاملMotor Number Controls Cargo Switching at Actin-Microtubule Intersections In Vitro
BACKGROUND Cellular activities such as endocytosis and secretion require that cargos actively switch between the microtubule (MT) and actin filament (AF) networks. Cellular studies suggest that switching may involve a tug of war or coordinate regulation of MT- and AF-based motor function. RESULTS To test the hypothesis that motor number can be used to direct the outcome of a tug-of-war proces...
متن کاملMyosin Va and myosin VI coordinate their steps while engaged in an in vitro tug of war during cargo transport.
Myosin Va (myoV) and myosin VI (myoVI) are processive molecular motors that transport cargo in opposite directions on actin tracks. Because these motors may bind to the same cargo in vivo, we developed an in vitro "tug of war" to characterize the stepping dynamics of single quantum-dot-labeled myoV and myoVI motors linked to a common cargo. MyoV dominates its myoVI partner 79% of the time. Rega...
متن کاملOrganelle Transport: Dynamic Actin Tracks for Myosin Motors
Transport of cargo by molecular motors on microtubule and actin filament tracks is a fundamental property of eukaryotic cells. A new study reports that actin dynamics are required in cells for myosin I and V motor proteins to transport their organelle cargos on actin tracks.
متن کامل